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1.  INTRODUCTION 
 
Most power systems textbooks and courses are limited to the modeling and analysis of balanced 
three-phase systems. The models and analyses assume a balance so that only a single-phase 
equivalent model is required. While this model gives satisfactory results for large interconnected 
system, it is not sufficient for the modeling and analysis of a distribution system. A distribution system 
is inherently unbalanced, and therefore three-phase models of all the components must be employed. 
This paper gives an example of computation of voltage drop of each phase and maximum power that 
can be transmmited by an untransposed distribution overhead line using accurate three-phase model, 
based on the phase impedance and admittance matrices.  
High-voltage transmission lines are usually transposed. Because distribution systems consist of three-
phase lines serving unbalanced loads, it is necessary to retain the identity of the equivalent single-
phase impedance terms of the conductors and to take into account the ground return path using 
Carson's equations. 
An example of computation of the overhead line is given in the paper. The 35 kV distribution line, 
constructed with 18m concrete-reinforced poles, and with delta-configured three-phase 70/12 mm2 
conductors is considered. The results of calculation are three different voltage drops of each phase. 
The coefficient of unbalance is introduced to show the measure of symmetry of voltages at sending 
end of the line, assuming that the three-phase voltages at source end are equal and symmetric. This 
coefficient is defined according to American National Electrical Manufacturers Association standard as 
quotient of maximum deviation from average value of three-phase voltages to average value. The 
power transmission capacity of an overhead line depends on length of a line. Numerical example 
shows two different values of power transmission capacities of transposed and untransposed 
distribution line. Transmission capacity computated assuming transposed three-phase line is biger 
than that of untransposed line, which takes into account the maximum percent voltage drop of critical 
phase. 
 
 
2.  SERIES IMPEDANCE OF OVERHEAD LINES 
 
The intent of this paper is to calculate voltage drop and power transmission capacity of the line using 
accurate three-phase model that consists of series impedances and shunt admittances. The 
determination of the series impedance for overhead and underground lines is a first step before the 
analysis of a distribution system can begin. The series impedance of a three-phase distribution line 
consists of the resistance of the conductors and self and mutual inductiv reactance resulting from the 



magnetic fields surrounding the conductors. Both resistances and reactances are usually expressed in 
Ω/km. 
 
 
2.1  Transposed Three-Phase Lines 
 
High-voltage transmission lines are usually assumed to be transposed, i. e. each phase occupies the 
same physical position on the structure for one-third of the length of the line. In addition to the 
assumption of transposition, it is assumed that the phases are equally loaded. With these two 
assumptions it is possible to combine the »self« and »mutual« terms into one »equivalent single-
phase« impedance. The expression for phase impedance is: 
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where: abD , bcD  and caD  are distances between phase conductors, [ ]m ; eqD  - Geometric Mean 

Distance of conductors, [ ]m ; r  - conductor resistance, [ ]kmΩ  and GMR  - Geometric Mean Radius of 

phase conductor, [ ]m . 
 
 
2.2  Untransposed Distribution Lines 
 
Because distribution systems consist of untransposed three-phase lines serving unbalanced loads, it 
is necessary to retain the expression of the self and mutual impedance terms of the conductors and 
take into account the ground return path for the unbalance currents. Since distribution lines are 
inherently unbalanced, the most accurate analysis should not make any assumptions regarding the 
spacing between conductors, conductor sizes, and transposition. This can be done using Carson’s set 
of equations that gives self and mutual impedances for an arbitrary number of overhead conductors. 
Carson’s equations assume the earth is an infinite, uniform solid with a flat uniform upper surface and 
a constant resistivity. To apply Carson’s equation, conductor images must be used. Every conductor 
at a given distance above ground has an image conductor the same distance below ground. This is 
illustrated in Figure 1. 

 
 
 
 
 
 
 
 
 
 

Figure 1 – Conductors and its images 
 
If some approximations are made, modified Carson’s equations result, which will be used in the paper. 
Those modified equations for self and mutual impedances are: 
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for mutual impedances. 
In this equations f  is frequency (50 Hz ), and ρ  is specific earth resistivity in m⋅Ω . Applying 
equations (2.1) and (2.2) a 3 x 3 phase impedance matrix for a three-phase line yields. 
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In equation (2.3) diagonal terms aaz , bbz  and ccz  represent self-impedances of a line, while off-

diagonal terms represent mutual-impedances. For a distribution line that is not transposed, the 
diagonal terms of equation (2.3) will not be equal to each other, and the off-diagonal terms will not be 
equal to each other. However, the matrix will be symmetrical. 
Using phase impedance matrix, voltages at sending and receiving end of an overhead line can be 
expressed as: 
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where: agV1  is phase (a)–to ground voltage at receiving end (toward distribution substation), agV 2  is 

the phase (a)-to ground voltage at sending end (toward load) of a line, and aI , bI  , cI  are line 

currents of an overhead line. Equation (2.4) can be written in condensed form as: 
 

   [ ] [ ] [ ] [ ]abcabcgabcgabc IZVV ⋅+= −− 21      (2.5) 
 

where elements of matrix [ ]abcZ  are ),,(,; cbajiLzZ lineijij =⋅= , and lineL  is length of a line. 

 
 
3.  SHUNT ADMITTANCE OF OVERHEAD LINES 
 
The shunt admittance of a line consists of the conductance and the capacitive susceptance. The 
conductance is usually ignored because it is very small compared to the capacitive susceptance.  
The voltage drop between conductor i  and ground can be expressed as: 
 

   jijiiiig qPqPV ⋅+⋅=  
 

where iq  and jq  are charge densities on conductors i  and j  respectively, and iiP , ijP  self and 

mutual potential coefficients defined as: 
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In preceding equations (3.1) and (3.2) the terms have folowing meaning: 
• iiS  = Distance from conductor i  to its image i ′ , [ ]m , 

• ijS  = Distance from conductor i  to the image of conductor j , designated in Figure 1 as /j , [ ]m , 

• ijD  = Distance from conductor i  to conductor j , [ ]m , 

• iRD  = Radius of conductor i , [ ]m . 
For a three-phase overhead line, the 3 x 3 potential coefficient matrix can be constructed, using 
expressions (3.1) and (3.2). Thus, the following matrix is formed 
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The inverse of the potential coefficient matrix will give 3 x 3 capacitance matrix  [ ] [ ] 1
abcabc PC −= . 



Neglecting the shunt conductance, the phase shunt admittance matrix is given by: 
 

   [ ] [ ] kmSCjy abcabc
/0 µω ⋅⋅+=  

 

Finally, total phase admittance matrix is defined as product of matrix [ ]y
abc

 and length of a line lineL : 
 

   [ ] [ ] lineabcabc LyY ⋅=  

 
 
4.  EXACT DISTRIBUTION OVERHEAD LINE MODEL 
 
The exact model of a three-phase overhead line is shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Three-phase line segment model 
 
Kirchhoff’s current law in matrix form applied at node 2 of the model of Figure 2 gives: 
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Kirchhoff’s voltage law in matrix form applied to the model gives: 
 

   [ ] [ ] [ ] [ ]abcabcgabcgabc IZVV ⋅+= −− 21
     (4.2) 

 
Substituting Equation (4.1) into Equation (4.2) and collecting terms yields: 
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Equation (4.3) is of the general form: 
 

   [ ] [ ] [ ] [ ] [ ]221 abcgabcgabc IbVaV ⋅+⋅= −−      (4.4) 

where   [ ] [ ] [ ] [ ]abcabc YZUa ⋅+=
2
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   [ ] [ ]abcZb =  
 
The input current to the line at node 1  is 
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Using Equations (4.1), (4.3) and (4.5) yields 
 

   [ ] [ ] [ ] [ ] [ ]221 abcgabcabc IdVcI ⋅+⋅= −      (4.6) 
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where   [ ] [ ] [ ] [ ] [ ]abcabcabcabc YZYYc ⋅⋅+=
4
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Equations (4.4) and (4.6) can be put into partitioned matrix form: 
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Equation (4.7) can be solved for the voltages and currents at node 2  in terms of the voltages and 
currents at node 1 : 
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where identity [ ] [ ] [ ] [ ] [ ]Ucbda =⋅−⋅  is used. Since the matrix [ ]a  is equal to the matrix [ ]d , Equation 
(4.8) in expanded form becomes: 
 

   [ ] [ ] [ ] [ ] [ ]112 abcgabcgabc IbVaV ⋅−⋅= −−                    (4.9) 

   [ ] [ ] [ ] [ ] [ ]112 abcgabcabc IdVcI ⋅+⋅−= −                  (4.10) 

 
Equations (4.9) and (4.10) will be used in numerical example of calculation in Section 5. 
 
 
5.  THE EXAMPLE OF VOLTAGE DROP COMPUTATION 
 
This Section is devoted to give the numerical example of calculation of voltage drop using Equation 
(4.9) of the preceding Section. The 35kV overhead distribution line, designed with reinforced pole 
body and ACSR conductors in triangular (delta) configuration is considered. 
For given length of an overhead line, values, such as three-phase line-to-line voltages, three-phase 
line-to-ground voltage drops, percent unbalance, and some other values is evaluated and shown as a 
function of input power, i.e. power at receiving end of the line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 - An overhead line with conductors in  
triangular configuration 

 
The balanced (symmetrical) three-phase voltages at receiving end of the line (toward to distribution 
substation X/35 kV) are assumed. Also the balanced customer demand is assumed. The distribution 
overhead line is not transposed, therefore the precise three-phase model of Equations (4.6) and (4.9) 
is used. Computation shows that the voltages at sending end of the line (towards customer) are not 
balanced. 
The input data for the calculation are given in Table 1. Values L , 1L , 2L , h  and H  are referenced to 
Figure 3. 
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Table 2 simultaneously shows the results of computation of three-phase line-to-line voltages at 
sending end of the line using Equation (1.1) and Equation (4.9), for different values of input power. 
When calculation is performed using Equation (1.1), the balanced three-phase input voltages, 
balanced load, and transposed line are assumed. In this case a single-line equivalent circuit of a line is 
commonly used. 

TABLE 1 - Input data for computation 
No. Input Data Assumed Value 
1. Distance from top of the pole body to upper support (L) 0.2 m 
2. Length of upper support (L1) 1.6 m 
3. Length of lower support (L2) 1.25 m 
4. Heigth of the pole body (H) 18 m 
5. Difference of altitudes from upper to lower support (h) 2.8 m 
6. Type of conductors ACSR 70/12 mm2 
7. Geometric Mean Radius of conductor (GMR) 4.7478 mm 
8. Radius of conductor (RD) 5.85 mm 
9. Resistance of conductor per 1 km (r) 0.413 Ω/km 

10. Length of overhead line (Llline) 10 km 
11. Power Factor (cosφ) 0.95 
12. Rated line-to-line voltage of the line (Vrated ) 35 kV 
13. Specific resistivity of earth (ρ) 100 Ωm 
14. Frequency (f) 50 Hz 
15. Input line-to-line voltage (at receiving end of the line) (V1rated) 36.5 kV 
16. Allowable percent voltage drop down the line (p%)  8% 

 
Results of this evaluating are placed in column 2 of the table. Columns 3, 4, and 5 present the results 
of computation assuming untransposed distribution line giving the values of all phase voltages. Input 
power (kVA) that line receives from substation is placed in first column, varying from 0 to 10000 kVA. 
Using single-phase model of Equation (1.1) the impedance of the line of length 10 km is 
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The three-phase accurate model, assuming untransposed line shown in Figure 3, gives the 3 x 3 
phase impedance matrix: 
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As can be seen the off-diagonal terms, which represent the mutual coupling between phases, are not 
equal to each other. In Table 2, values computated using Equation (1.1) are approximately the 
average values of those computating using Equation (4.9) for a given power. For example, at input 
power of 10000 kVA, the single-phase model voltage at sending end of the line is 35.081 kV, and this 
value is approximately equal to average value: ( ) kV078.353043.35127.35065.35 =++ . 
 

TABLE 2 - Results of computation using single-phase  
  and accurate three-phase matrix  models 

Input Power 
(kVA) 

Output Voltage 
Using Eq. (1.1) 

(kV) 

Output Voltage 
of Phase “a” 

(kV) 

Output Voltage 
of Phase “b” 

(kV) 

Output Voltage 
of Phase “c” 

(kV) 
0 36.500 36.498 36.498 36.498 

1000 36.357 36.354 36.360 36.352 
2000 36.215 36.210 36.223 36.206 
3000 36.073 36.067 36.085 36.060 
4000 35.930 35.923 35.948 35.914 
5000 35.788 35.780 35.811 35.768 
6000 35.647 35.637 35.674 35.623 
7000 35.505 35.494 35.537 35.478 
8000 35.363 35.351 35.400 35.333 
9000 35.222 35.208 35.264 35.188 

10000 35.081 35.065 35.127 35.043 
 



Results of calculation of Table 2 (columns 3, 4 and 5), using three-phase accurate model, are shown 
in Figure 4. If voltage drops were calculated refering to rated line-to-ground voltage, the percent line-
to-ground three-phase voltages would be evaluated, as shown in Figure 5. 
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Figure 4 - Three-phase output (at sending end) line-to-line voltages in kV 

versus input power (at receiving end) in kVA. 
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Figure 5 - Percent line-to-ground voltage drops referenced 

 to rated line-to-ground voltage versus input power. 
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Figure 6 - Percent unbalance defined by Equation (5.1) 

as the function of the input power. 
 



Because the mutual coupling between phases on the line are not equal, there will be different values 
of voltage drop on each of the three phases. As a result, the voltages on a distribution overhead line 
become unbalanced even when the loads and input set of voltages at the begining of the line are 
balanced. 
A usefull method of describing the degree of unbalance is to use the following definition of unbalance 
factor: 
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Figure 6 illustrates the result of computation of Unbalance Factor as the function of input power at 
receiving end of the line for given input data of Table 1. 
The residual of the section is devoted to calculation of Power Transmission Capacity of the overhead 
line, when the line is considered in, one case as transposed and with balanced loading, and in the 
other case as antransposed, with balanced load. In first case the Power Transmission Capacity, 
denoted as transposedS , can be calculated using Equation (5.2) 
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where: 

%p  = maximum permissible percent voltage drop, 

ratedV  = rated line-to-line voltage, 

ratedV1  = input line-to-line voltage, 

z  = impedance per 1 km of the balanced line, using single-phase equivalent model, Eq. (1.1), 
ϕcos  = power factor of the load. 

Figure 7 shows the difference between Power Transmission Capacity calculated by Equation (5.2), 
assuming transposed line (upper curve), and PTC calculated taking into consideration the maximum 
voltage drop of critical phase (lower curve). Horizontal straight line represents the maximum Power 
Capacity because of the limited value of line currents flowing through a given cross section of 
conductor used, (in this example 70/12 mm2). Both curve give the maximum allowable power in MVA 
that can be transmited causing the voltage drop down the line less then or equal to 8%, versus length 
of the line in km. 
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Figure 7. Power Transmission Capacity versus length of the line. 

Upper curve represents the transposed line. Lower curve shows the 
untransposed distribution line. 

 
 



 
6.  CONCLUSION 
 
Methods for computing series phase impedance and shunt capacitiv admittance matrices for overhead 
lines have been presented in this paper. Distribution lines are typically so short (compared to high-
voltage transmission lines) that the shunt admittance can be ignored. However, there are cases of 
long, lightly loaded overhead lines where the shunt admittance should be included. Modified Carson’s 
equations, that taking into account return path of currents through earth, are used in order to compute 
the phase impedances. When using the modified Carson’s equations there is no need to make any 
assumptions, such as transposition of the lines. By assuming an untransposed line and including the 
actual phasing of the line, the most accurate values of the phase impedances and admittances are 
determined. Since voltage drop is a primary concern on a distribution line, the impedances used for 
the line must be as accurate as possible. 
Three-phase output line-to-line voltages, thre-phase line-to-ground voltage drops, percent unbalance 
are calculated and shown in Figures 4, 5, and 6. Results shown in those Figures are obtained using 
exact model with no approximations; that is, assuming no transposition of the line.  
Voltages at sending end of a distribution overhead line become unbalanced even when the loads and 
input set of voltages at the begining of the line are balanced. 
The MATHCAD program for computation given in the paper is developed, making the possibility of 
voltage drop calculation varying all of the input data from Table 1. 
Figure 7 shows the difference between Power Transmission Capacities of transposed and 
untransposed lines, with balanced input three-phase voltages and loading in both cases. 
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